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Ternary Excess Molar Enthalpies of Alcohols with
Methyl #-Butyl Ether at 7=298.15 K

K. Tamura," > M. M. H. Bhuiyan,' and T. Yamada'
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Ternary excess molar enthalpies HE at 298.15 K and atmospheric pressure
measured in a flow microcalorimeter are reported for the methanol+ 2-propa-
nol +methyl #-butyl ether (MTBE) and ethanol + 1-propanol+MTBE systems.
The ternary results have been correlated by means of a polynomial equation and
used to construct constant excess enthalpy contours. Furthermore, the results
have been compared with those calculated from a UNIQUAC associated-solution
model taking into account molecular association of alcohols and solvation
between unlike alcohols and alcohols with MTBE using only binary information.

KEY WORDS: alcohols; association; excess molar enthalpies; flow calorimeter;
MTBE,; solvation.

1. INTRODUCTION

The compositions of reformulated gasoline have received much attention
by the Reformulated Gasoline Program of the United States, and stringent
requirements have been placed on ozone-forming and air toxic emissions.
These goals are achieved today by the addition of oxygenates such as light
alcohols and aliphatic branched ethers because of their octane-enhancing
and expected air pollution-reducing capabilities.

Methyl z-butyl ether (MTBE) as an octane enhancer in gasoline has
been widely used over the last 10 years mostly as the result of the manda-
tory reduction in the use of organometal (e.g., tetra-ethyl lead, tetra-methyl
lead, and methyl cyclopentadienyl manganese tricarbonyl) and aromatic
compounds (e.g., benzene, toluene, xylenes, and ethylbenzene) in gasoline.
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MTRBE is chiefly used as a motor fuel component because of its excellent
blending octane number properties. It has outstanding physical properties
such as low volatility, miscibility in gasoline, and storage stability. In addi-
tion to these properties, MTBE utilization offers ecological advantages, as
it reduces the polluting components in exhaust gases such as CO, unburned
hydrocarbon, ground-level ozone, and polynuclear aromatics. The econo-
mic advantages of the MTBE manufacturing process include lower
investment [ 1], lower operating costs and energy consumption, besides its
noteworthy octane properties. From the technological, ecological, and
economical point of view, the need for information on the thermodynamic
behavior of the liquid mixtures is significantly increasing, and an enormous
amount of work [2-7] has been carried out to determine the mixing prop-
erties of the oxygenated additive. A reliable knowledge of thermodynamic
excess properties for the additive is useful in the blending and refinery
process.

We have undertaken a program on the measurements of the thermo-
dynamic properties of ternary blends of oxygenated compounds such as
two alcohols and an aliphatic branched ether. In this work, we have
measured the ternary excess molar enthalpies of the methanol + 2-propanol
+MTBE and ethanol+ 1-propanol+ MTBE systems at 298.15 K. Results
for the corresponding six constituent binaries of the above two ternary
systems at 298.15 K have already been reported: (methanol+ 2-propanol)
[8], (methanol+MTBE) [9], (ethanol+ l-propanol) [10], (ethanol+
MTBE) [11], (1-propanol+ MTBE) [12], and (2-propanol+ MTBE) [12].

2. EXPERIMENTAL

The chemicals and their specifications are listed in Table I. The puri-
ties of the compounds analyzed by gas chromatography were of good

Table 1. Specification and Density (g-cm™) of the Chemicals at 298.15 K

Density (g-cm™)

Specification
Chemical Supplier (mol%) Expt. Lit.
Methanol Wako Pure Chemical G.C.: >99.7 0.78665 0.78665 [7]
Ethanol " G.C.:>99.5 0.78524 0.78530 [13]
1-Propanol " G.C.:>99.5 0.79973 0.79975 [14]
2-Propanol " G.C.:>99.5 0.78123 0.78129 [14]

MTBE Kanto Chemical G.C.:>99.0 0.73538 0.73540 [15]
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quality for the excess molar enthalpy measurements. The densities
measured by a DMA 58 digital densimeter are in reasonable agreement
with literature values [7, 13-15]. Liquids were stored in sealed dark bottles
dried over molecular sieves (3A 1/16, 4A 1/16) for about 3 weeks before
measurements to eliminate residual traces of water and avoid moisturizing.
Just prior to use, the required amount of liquids was degassed for 10 min at
about 298.15 K in an ultrasonic bath. During each experimental run the
temperature was controlled by a thermostatic water bath within +0.005 K.
Excess molar enthalpies were determined by a flow microcalorimeter at
298.15 K. Details of the equipment and its operation were described pre-
viously [16]. Calibration of the calorimeter was carried out using test mix-
tures of (benzene + cyclohexane), and our results agreed with literature data
[17, 18] to within 5 J-mol ™.

Ternary mixtures of the methanol 4 2-propanol+MTBE or ethanol+
1-propanol + MTBE systems were prepared by mixing the binary mixtures
of methanol (1)+2-propanol (2) or ethanol (1)+ 1-propanol (2) with
MTBE. The compositions of three binary mixtures corresponding to A, B,
and C in Fig. 1 were 25, 50, and 75 mol% of component 1 to cover
complete composition ranges of the ternary mixtures. Consider 1 mol of a
ternary mixture D prepared by mixing (1 —x;) mol of binary mixture A
and x; mole of component 3 (MTBE). The excess enthalpy for a mol of a

1 A B C 2

Fig. 1. Experimental procedure for the ternary system.
A, B, and C correspond to compositions of binary
mixture (1+2). D represents a composition of ternary
mixture at which measurements were made.
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ternary mixture of composition x,, x,, and x;, corresponding to point D
shown in Fig. 1, can be expressed as follows:

Hgl,m:AHsl'F(l_xa)D H:];:1,A (1

where H, ,; is the excess enthalpy per mol of ternary mixture D, and AH},
is the excess enthalpy measured for the pseudobinary mixture, which is
obtained by mixing the binary mixture A with component 3. H, , is the
excess enthalpy for the binary mixture A, whose value at a specified com-
position was interpolated by means of a spline-fit method. The same holds
true with mixtures B and C as in mixture A.

3. RESULTS AND DISCUSSION

Experimental results for AHE and the ternary excess molar enthalpies
H} ,; are summarized in Table II for the (methanol+ 2-propanol+
MTBE) system and in Table III for the (ethanol+ 1-propanol+MTBE)
system. The measured values of the ternary mixtures were correlated using
the following equation:

Hlli 123 =H11;:1,12 +HE1,13 +H51,23 +x1x2x3A123/RT 2

where HY, ;; were fitted to a polynomial equation of the form
E 1 4 1
Hm,ij/(J‘mOI_ )= XiXj z a,(x; _xj)n_ 3)
n=1

where a, is the coefficient calculated by using an unweighted least-squares
method. The values of the coefficients for the six binary mixtures are listed
in Table IV along with the standard deviations s defined by the formula
s={Xr, (H,—HE)?/(m—p)}°°, where m is the number of experimen-

tal data points and p is the number of parameters. The term A4,,; of Eq. (2)
is expressed by

Am/RT:ZP: by(1—2x3)77 /{1 —k(1—2x5)} “

The values of the coefficients b; and k, the absolute arithmetic-mean devia-
tions 6(H L) =7, |Hy, — HG,|/m, and the standard deviations, s obtained

in fitting Eqs. (3) and (4) to the experimental ternary H, ,,; are listed in
Table V. Constant H, ,,, contours are plotted in Fig. 2 for the (methanol
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Table IV. Coefficients of Eq. (3) and Standard Deviations, s

Mixture a, a, a, a, s (J-mol™")
Methanol + 2-propanol® —302.63 125.72 —8.07 1.05 0.0
Methanol + MTBE® 1152.20 —929.30 55.30 —635.10 1.8
Ethanol + 1-propanol® 76.72 11.34 8.69 —1.58 0.1
Ethanol + MTBE* 1947.30 —901.61 578.29 —760.01 4.3
1-Propanol + MTBE* 2136.60 —1007.80 361.70 —372.20 1.1
2-Propanol + MTBE* 3106.10 —914.70 598.40 —629.70 34

¢ From Ref. 8.

® From Ref. 9.

¢ From Ref. 10.
4From Ref. 11.
¢ From Ref. 12.

Methanol

s SO
/ 2R

1 0.8 0.6 0.4 0.2 0
Methyl t -butyl ether X3 2-Propanol

Fig. 2. Contours of excess molar enthalpies for the ternary mixture
of methanol+ 2-propanol+ MTBE at 298.15 K. ( ) Calculated from
Egs. (3) and (4).
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Ethanol

X2

1 08 06 0.4 0.2 0
Methvl t -butvl ether X3 1-Propanol

Fig. 3. Contours of excess molar enthalpies for the ternary mixture of
ethanol + 1-propanol + MTBE at 298.15 K. (——) Calculated from Egs. (3)
and (4).

+ 2-propanol+ MTBE) system and in Fig. 3 for the (ethanol + 1-propanol +
MTBE) system using Eqgs. (3) and (4).

Figure 4 shows the plot of the binary excess molar enthalpy HE
against the mole fraction of pure alcohol (x;) for the six constituent
binaries: methanol (1)+2-propanol (2), methanol (1)+MTBE (2), 2-pro-
panol (1)4+MTBE (2), ethanol (1)+ 1-propanol (2), ethanol (1)+MTBE
(2), and 1-propanol (1)4+MTBE (2). The measured values of pseudobinary
excess molar enthalpies AHE are plotted in Fig. 5 for the (methanol+
2-propanol+ MTBE) system and in Fig. 6 for the (ethanol+ 1-propa-
nol+MTBE) system as a function of the mole fraction of MTBE. The
experimental pseudobinary excess molar enthalpies are positive for all the
studied systems over the whole range of composition. The measured 4HE
data may be interpreted qualitatively by postulating that the excess molar
enthalpy is the result of two opposing effects:

(i) The positive contribution to AHE arises from the breaking, or
stretching, of hydrogen bonds in the self-associated alkanol mul-
timers due to the hydroxy groups.
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Fig. 4. Excess molar enthalpies HE for the six binary mixtures at 298.15 K:
(A) 2-propanol+MTBE, (O) 1-propanol+MTBE, ([0) ethanol+ MTBE, (®)
methanol+ MTBE, () ethanol+ 1-propanol, and (M) methanol+2-propanol.
(---) Obtained from the model.

(ii) The negative contribution to AHE arises from the cross-associa-
tion between unlike alkanol multimers and the solvation between
alkanol multimers and MTBE through hydrogen bonding.

The positive experimental results for both systems suggest generally
that the hydrogen bonds of the alkanol multimers broken by the addition
of MTBE predominate over the weak hydrogen bonds formed between
alkanol multimers and sterically hindered MTBE molecules.

4. EXCESS ENTHALPY PREDICTION

The experimental determination of multicomponent properties is con-
siderably more tedious and complicated compared to that of binaries if the
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Fig. 5. Excess molar enthalpies AHE for the pseudobinary mixtures of [(metha-
nol+2-propanol)+ MTBE] at 298.15 K: (H)x;=0.25 (A)x}=0.50, and
(@) x; =0.75. (---) Obtained from the model.

data have to be known at any composition. For this reason a practical
method of predicting the thermodynamic properties of multicomponent
systems from binary data has been proposed. We use a UNIQUAC asso-
ciated-solution model [19] to express the ternary excess molar enthalpies
of the mixtures containing two alcohols and an active nonassociating
component.

A and B stand for two alcohols (methanol and 2-propanol or ethanol
and 1-propanol) and C denotes methyl z-butyl ether (MTBE) as an active
nonassociating component. The model assumes that the two alcohols A
and B undergo self- and cross-association and solvation with C to form
linear complexes: A;, B;, (A;B;)x, (B;A));, Ai(B;Ay);, Bi(A;By), A,C, B,C,
(A;B)): C, A;(B;Ay), C, (BA)), C, and B,;(A;By) C, where i, j, k, and [ go
from 1 to co. Further assumptions are that the association constants of
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Fig. 6. Excess molar enthalpies AHE for the pseudobinary mixtures of [(etha-
nol+ 1-propanol)+ MTBE] at 298.15 K: (M)x}=0.25 (A)x}=0.50, and
(@) x7 =0.75. (---) Obtained from the model.

the alcohols are independent of the degree of association and the solvation
constants are also not concerned with the degree of association and solva-
tion. Thus, the model includes a total of five equilibrium constants:
K,, Ky, Kup, Ksc, and Kg. The equilibrium constants of the preceding
chemical complex forming reactions are defined in terms of the segment
fractions and the molecular geometric volume parameters of the chemical
species so that the equilibrium constants are dimensionless.
The model gives the ternary excess molar enthalpy for the systems as
the sum of the chemical and physical contribution terms:
HE:H(];:hem +H§hys (5)
The chemical contribution term is related to the enthalpy of complex
formation in the mixing system whose derivation was presented previously
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[19]. The physical contribution term is derived by applying the Gibbs—
Helmholtz relation to the residual term of the UNIQUAC equation [20].
The association constants of alcohols A and B expressed as K, and K at
323.15 K taken from Ref. 21 are 173.9 for methanol, 110.4 for ethanol,
87.0 for 1-propanol, and 49.1 for 2-propanol. The enthalpy of H-bonding
formation is assumed to be A, =hy =k, =— 23.2 kJ-mol~! for all
alcohols [22], and the enthalpy of complex formation between alcohols
and MTBE is estimated as —19.5 kJ-mol ™. Table VI summarizes the sol-
vation constants [23] and enthalpies of complex formation between unlike
molecules. The temperature dependence of the equilibrium constants is
fixed by the van’t Hoff relation and the enthalpies of chemical complex
formation are assumed to be independent of temperature. The equilibrium
constants at 298.15 K required for the excess enthalpy calculation were
obtained according to the van’t Hoff equation. The structural parameters
of complexes are expressed as the sum of parameters of each monomer.
The monomer structural parameters, » and g , were calculated using the
method of Vera et al. [24]. In fitting the model to binary HE data, from a
practical point of view the energy parameters a;; in H Ehys are assumed to be
a linear function of temperature as given by a,;/R=C;+D,;{(T/K)
—273.15}. The coefficients C;; and D,; were obtained by minimizing the
sum of squares between the experimental HE and the values calculated by
using the model of a simplex method [25]. The binary parameters and the
absolute arithmetic-mean deviations 5(HE) between the binary experimen-
tal and the calculated values are given in Table VII. The model with the
association and solvation constants and binary parameters alone was used
to predict the ternary excess molar enthalpies. The absolute arithmetic-
mean deviations of the excess molar enthalpies between the experimen-
tal and the calculated values were 11.2 J-mol™ for the methanol+

Table VI. Values of Solvation Constants and Enthalpies of Complex Formation Between

Unlike Molecules
Mixture (A +B) K (T) —hup (kJ-mol ™) T (K)
Methanol 4 2-propanol® 70.0 23.2 323.15
Methanol + MTBE® 22.0 19.5 298.15
Ethanol + 1-propanol” 49.0 23.2 323.15
Ethanol + MTBE® 18.0 19.5 298.15
1-Propanol + MTBE? 6.0 19.5 298.15
2-Propanol + MTBE? 5.0 19.5 298.15

“From Ref. 23.
® From this work.
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Table VII. Binary Parameters and Absolute Arithmetic-Mean Deviations

No. of data O(HE)
Mixture (A +B) points Cpa (K) Cag (K) Dy D,y  (J-mol™)
Methanol + 2-propanol® 9 —68.29 —293.12 —0.3051 —1.0499 2.2
Methanol + MTBE® 14 —95.19  371.97 —-0.0301 0.1757 2.5
Ethanol + 1-propanol® 15 259.75 193.98 09548  0.7018 0.2
Ethanol + MTBE? 19 839.30 515.83  2.6866  0.7471 32
1-Propanol + MTBE® 18 264.91 377.01 0.7462  0.7250 5.4
2-Propanol + MTBE? 18 283.78 316.54  0.6814  0.3358 39

“From Ref. 23.
® From this work.

2-propanol + MTBE system and 14.7 J-mol™" for the ethanol+ 1-propa-
nol+ MTBE system.

5. CONCLUSION

Ternary excess molar enthalpies have been determined for the metha-
nol+2-propanol+ MTBE and ethanol+ l-propanol+MTBE systems at
298.15 K, and the results compare well with those calculated by using a
polynomial equation. Furthermore, the experimental results were repre-
sented satisfactorily by the UNIQUAC associated-solution model using
only binary parameters.
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